The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage

نویسندگان

  • Juan Lafuente-Barquero
  • Sarah Luke-Glaser
  • Marco Graf
  • Sonia Silva
  • Belén Gómez-González
  • Arianna Lockhart
  • Michael Lisby
  • Andrés Aguilera
  • Brian Luke
چکیده

RNA-DNA hybrids are naturally occurring obstacles that must be overcome by the DNA replication machinery. In the absence of RNase H enzymes, RNA-DNA hybrids accumulate, resulting in replication stress, DNA damage and compromised genomic integrity. We demonstrate that Mph1, the yeast homolog of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids accumulate, e.g. in RNase H or THO-complex mutants and at short telomeres. Mph1, however is a double-edged sword, whose action at hybrids must be regulated by the Smc5/6 complex. This is underlined by the observation that simultaneous inactivation of RNase H2 and Smc5/6 results in Mph1-dependent synthetic lethality, which is likely due to an accumulation of toxic recombination intermediates. The data presented here support a model, where Mph1's helicase activity plays a crucial role in responding to persistent RNA-DNA hybrids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites

Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking pri...

متن کامل

DNA damage checkpoint and recombinational repair differentially affect the replication stress tolerance of smc6 mutants

DNA damage checkpoint and recombinational repair are both important for cell survival of replication stress. Because these two processes influence each other, isolation of their respective contributions is challenging. Research in budding yeast shows that removal of the DNA helicase Mph1 improves survival of cells with defective Smc5/6 complex under replication stress. mph1 is known to reduce t...

متن کامل

Mms21 SUMO Ligase Activity Promotes Nucleolar Function in Saccharomyces cerevisiae

The budding yeast E3 SUMO ligase Mms21, also known as Nse2, is a component of the Smc5/6 complex, which regulates sister chromatid cohesion, DNA replication, and repair. Our study shows that the mms21RINGΔ mutant exhibits (1) reduced ribosomal RNA production; (2) nuclear accumulation of ribosomal proteins; (3) elevated Gcn4 translation, indicating translational stress; and (4) upregulation of G...

متن کامل

Binding of the Fkh1 Forkhead Associated Domain to a Phosphopeptide within the Mph1 DNA Helicase Regulates Mating-Type Switching in Budding Yeast

The Saccharomyces cerevisiae Fkh1 protein has roles in cell-cycle regulated transcription as well as a transcription-independent role in recombination donor preference during mating-type switching. The conserved FHA domain of Fkh1 regulates donor preference by juxtaposing two distant regions on chromosome III to promote their recombination. A model posits that this Fkh1-mediated long-range chro...

متن کامل

Non-SMC Element 2 (NSMCE2) of the SMC5/6 Complex Helps to Resolve Topological Stress

The structural maintenance of chromosomes (SMC) protein complexes shape and regulate the structure and dynamics of chromatin, thereby controlling many chromosome-based processes such as cell cycle progression, differentiation, gene transcription and DNA repair. The SMC5/6 complex is previously described to promote DNA double-strand breaks (DSBs) repair by sister chromatid recombination, and fou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017